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The tendency of granular materials in rapid shear flow to form non-uniform structures
is well documented in the literature. Through a linear stability analysis of the solution
of continuum equations for rapid shear flow of a uniform granular material, performed
by Savage (1992) and others subsequently, it has been shown that an infinite plane
shearing motion may be unstable in the Lyapunov sense, provided the mean volume
fraction of particles is above a critical value. This instability leads to the formation
of alternating layers of high and low particle concentrations oriented parallel to the
plane of shear. Computer simulations, on the other hand, reveal that non-uniform
structures are possible even when the mean volume fraction of particles is small. In the
present study, we have examined the structure of fully developed layered solutions,
by making use of numerical continuation techniques and bifurcation theory. It is
shown that the continuum equations do predict the existence of layered solutions
of high amplitude even when the uniform state is linearly stable. An analysis of the
effect of bounding walls on the bifurcation structure reveals that the nature of the
wall boundary conditions plays a pivotal role in selecting that branch of non-uniform
solutions which emerges as the primary branch. This demonstrates unequivocally that
the results on the stability of bounded shear flow of granular materials presented
previously by Wang et al. (1996) are, in general, based on erroneous base states.

1. Introduction
The formation of non-uniform structures in rapid granular flows has been observed

in many recent experiments and computer simulations (Hopkins & Louge 1991;
Savage 1992a; Goldhirsch, Tan & Zanetti 1993; Miller, O’Hern & Behringer 1996).
As continuum equations of motion, such as those derived from the kinetic theory of
granular materials (for example, see Lun et al. 1984, and Jenkins & Richman 1985a),
are commonly used to model such flows, it is of interest to determine whether these
structures can be captured by such equations in a qualitatively correct manner.

Mello, Diamond & Levine (1991) examined plane shearing motion using continuum
equations derived from granular kinetic theory and investigated the propagation of
disturbances with wave vectors in the direction of the vorticity. Instabilities which
arise during the cooling of an initially uniform granular material as a result of inelastic
collisions have been examined by Goldhirsch et al. (1993) and McNamara (1993).
The stability of the solution of the continuum equations representing an infinite plane
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shearing motion has been examined in detail by Savage (1992b) and Babić (1993).
They focused on the Kelvin modes, namely disturbances which take the form of
wavefronts rotating in conformity with the vorticity of the base-state flow field, and
found large initial growth rates. The relation of the Kelvin modes to stability has been
clarified by Schmid & Kytömaa (1994), who showed that initial transient amplification
of a disturbance does not imply instability in a Lyapunov sense (see Wang, Jackson
& Sundaresan 1996 for further discussion). It is now clear that a uniform granular
material in unbounded shearing motion is linearly unstable to layering modes, which
lead to the formation of alternating layers of high and low particle concentrations
oriented parallel to the plane of shear, provided the mean solids volume fraction is
above a critical value.

Wang et al. (1996) considered a rapidly sheared layer of granular material confined
between two parallel plates. They computed numerically the steady base-state solu-
tions of the continuum equations of motion using the kinetic-theory-based constitutive
model of Lun et al. (1984) and the boundary conditions proposed by Johnson & Jack-
son (1987) for various mean particle volume fractions, plate separations and material
properties, and proceeded to investigate their stability characteristics. Depending on
the nature of the particle–wall collisions and the operating conditions, a bounding
wall may act either as a source or a sink of fluctuational, or pseudo-thermal, energy.
These authors also considered an intermediate, although hypothetical, case where the
particle–wall collisions were taken to be elastic and no slip was permitted between the
particles and the bounding walls; in this situation, referred to as the case of adiabatic
walls, the base-state corresponds to a uniform distribution of particles and constant
shear rate. (We shall henceforth refer to this as the uniform solution.) Then the par-
ticles confined between the plates can be viewed as a slice of an infinite assembly of
particles in plane shear. These authors computed numerically the base-state profiles
for bounded shear flow and found that the state of uniform shear obtained for the
case of adiabatic walls was only slightly altered when the walls were non-adiabatic.
When the plate separation was sufficiently large, they reported that the deviation from
uniform shear was confined to a small region near the walls. Furthermore, they found
that the stability characteristics of the solutions obtained with non-adiabtic walls were
very similar to those corresponding to the case of adiabatic walls. This suggested that
the non-adiabaticity of the bounding walls (i.e. inelastic particle–wall collisions and
slip at the wall) influences the results quantitatively, but not qualitatively.

More recently, Alam & Nott (1998) also studied the problem of plane Couette flow,
and their findings differed from those of Wang et al. in some significant ways. They
observed that, when the boundaries are non-adiabatic, solutions of the type reported
by Wang et al. (1996) could be found only for modest plate separations. For large
plate separations, their solutions exhibited a much larger degree of segregation than
reported by Wang et al. (1996), and the stability characteristics of these solutions
were markedly different from those of the corresponding adiabatic solutions. Thus,
the bounding walls apparently had a both qualitative and quantitative influence on
the stability characteristics. It now appears clear that base-state solutions of Wang et
al. are incorrect for non-adiabatic boundaries, except for modest plate separations.
However, their result that instabilities in the form of layering modes (alternating
layers of high and low particle concentrations oriented parallel to the boundaries) are
present regardless of the nature of the boundaries, provided the mean solids fraction
is above a critical value of roughly 0.15, was verified to be correct by Alam & Nott
(1998).

This tendency to form a segregated layer of density higher than the mean was indeed
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observed in particle dynamics simulations by Tan (1995). Curiously, however, his
simulations revealed that segregated layers evolve even when the mean particle volume
fraction is small. This is in apparent conflict with the predictions of the continuum
equations described above. Furthermore, Tan has reported instances where two layers
of high solids fraction merge to form a single layer. Particle dynamics simulations of
Hopkins & Louge (1991) and Tan & Goldhirsch (1997) reveal both axial and lateral
structures. Particles tend to form aggregates (clusters), which interact with each other
in a complex manner (Tan & Goldhirsch 1997). Under some conditions, one may also
observe a churn-flow structure (Tan & Goldhirsch 1997).

The present study goes a step further in exploring the segregation patterns predicted
by the continuum equations of motion for rapid granular flows. Specifically, we present
a bifurcation analysis of the continuum equations to trace the family of steady fully
developed solutions for plane Couette flow. In order to explore in detail the effects of
wall properties on the solution structure, we treat the extent of non-adiabaticity as a
parameter and determine the influence of this parameter on the bifurcation structure.
Our analysis reveals clearly the structure of non-uniform, layered solutions permitted
by adiabatic walls and explains how the (non-adiabatic) nature of the boundaries
distorts the solution structure.

We also show that solutions with layered structures are possible for the case of
adiabatic walls at low mean particle volume fractions, even though there are no
bifurcations from the uniform solution at a finite Couette gap. These non-uniform
solutions may be reached via finite-amplitude perturbations about the uniform so-
lution, and we demonstrate this evolution by solving the full transient equations of
motion. Thus we are able to explain the evolution of segregated layers at low mean
densities as observed in the simulations of Tan (1995). Our transient solutions of
the continuum equations also predict the merging of segregated layers that Tan has
reported.

2. Governing equations
As in our earlier studies (Wang et al. 1996; Alam & Nott 1998), we will examine

the stability of rapid plane shear of a granular material using the equations proposed
by Lun et al. (1984). In the absence of gravity these equations take the following
form:

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ
Du

Dt
= −∇ · σ,

3
2
ρ

DT

Dt
= −∇ · q − σ :∇u− J,

representing the balance of mass, momentum, and pseudo-thermal energy, respectively.
Here ρ is the bulk density of the material, given by ρ = ρpν, where ν is the volume
fraction of solids and ρp the density of the solid material; u is the mean velocity;
σ is the stress tensor, defined in the compressive sense; T is the grain temperature,
defined as 1

3
u′2, where u′ is the fluctuation about the mean velocity; q is the flux of

the pseudo-thermal energy and J represents the rate of dissipation of this energy, per
unit volume, as a result of inelastic collisions between the particles. D/Dt denotes the
convective derivative.
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Figure 1. Schematic representation of shear flow of granular materials confined between two
parallel plates.

Neglecting frictional contributions to the stress, we adopt the constitutive relations
of Lun et al. (1984):

σ = [ρT (1 + 4ηνg0)− ηµb∇ · u]I
−
(

2 + α

3

){
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) [
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) [
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[
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(ν2g0)

T

ν
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48
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d
g0T

3/2,

where S is the deviatoric part of the rate of deformation:

S = 1
2
(∇u+ ∇uT )− 1

3
∇ · uI ,

η is related to the coefficient of restitution, ep, for particle–particle collisions by
η = (1 + ep)/2, while the two viscosity factors µ and µb, and the thermal conductivity
factor λ, are given by

µ =
5M(T/π)1/2

16d2
, µb =

256µν2g0

5π
, λ =

75M(T/π)1/2

8η(41− 33η)d2
,

where M and d are the mass and diameter of a particle respectively. Here, g0 is the
radial distribution function at contact, for which we choose the form used by Wang
et al. (1996), namely

g0(ν) =
1

1− (ν/νm)1/3
,

where νm denotes the solids volume fraction at random close packing, taken to be
0.65. The value of the parameter α is set to 1.6, as in the work of Wang et al. (1996).

Figure 1 is a schematic of the problem under consideration, namely plane shear
between two infinite parallel plates, and illustrates the choice of the coordinate system.
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The relative velocity between the two plates is ul , and the plates are separated by a
distance ∆, so the apparent shear rate, γ, is equal to ul/∆. N denotes the normal force
per unit area applied to each plate to maintain the plate separation constant at ∆.
We now introduce dimensionless variables as follows:

(u∗, v∗) =
(u, v)

γ∆
, θ =

T

(γd)2
, (X,Y ) = (x, y)/∆, τ = γt,

and this introduces one dimensionless group, C = d/∆, in the equations. Here u and
v are the axial and transverse components, respectively, of the velocity vector u. The
scaling used here is the same as in Alam & Nott (1998).

In dimensionless form the equations of motion can be written as follows:

∂ν

∂τ
+
∂(νu∗)
∂X

+
∂(νv∗)
∂Y

= 0,

ν

[
∂u∗

∂τ
+ u∗

∂u∗

∂X
+ v∗

∂u∗

∂X

]
= −C2 ∂(f1θ)

∂X
+

∂

∂Y

[
C2f2θ

1/2

(
∂u∗

∂Y
+
∂v∗

∂X

)]
+

∂
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[
2C2f2θ

1/2

(
2

3

∂u∗
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3
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∂Y
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.

The first of these is the continuity equation, the next two are the two components of
the momentum equation, and the last equation represents the pseudo-thermal energy
balance. The functions f1–f8 are dimensionless and they depend only on ν, see table 1.

The boundary conditions for granular flows must reflect the fact that granular
materials inevitably slip at the walls. Collisions of the particles with the walls dissipate
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√

3νmf2(ν)

Table 1. Dimensionless functions.

pseudo-thermal energy while slip at the walls generates pseudo-thermal energy. The
balance of these determines the effect of the wall, which can be a source or a sink of
pseudo-thermal energy.

Several studies have focused on the boundary conditions for granular flows (Hui et
al. 1984; Johnson & Jackson 1987; Jenkins & Richman 1986; Richman 1988; Louge
1994; and Jenkins & Louge 1997). In the first two of these, the boundary conditions
depend on only two wall properties: the coefficient of restitution for particle–wall
collision ew and a specularity coefficient φ′. In the other four papers the wall geometry
is characterized in a detailed manner and the specularity coefficient is related to the
details of the wall structure. However, the various models for the boundary interactions
yield the same qualitative behaviour. In order to retain consistency with our earlier
studies we use the boundary conditions of Johnson & Jackson (1987), which, in the
absence of friction, assume the form

n · σ · t +

(
π
√

3

6νm

)
φ′ρpνg0T

1/2usl = 0,

n · q =

(
π
√

3

6νm

)
φ′ρpνg0T

1/2usl −
(
π
√

3

4νm

)
(1− e2

w)ρpνg0T
3/2.

The first boundary condition is obtained by equating the component of traction
on the wall, in the direction of slip, to the rate of transfer of momentum to the wall
by particle–wall collisions. The second boundary condition is found by equating the
flux of pseudo-thermal energy from the wall to the difference between the rate of
generation by slip and the rate of dissipation due to the inelasticity of the particle–wall
collisions. Here n is the unit normal to the wall, pointing into the granular material,
usl = |u− uw| where uw is the velocity of the wall and u that of the granular material
in contact with it, and t is a unit vector tangent to the wall, in the direction of the slip
velocity. φ′ is a ‘specularity factor’, which measures the fraction of the momentum
of an incident particle in the direction of slip which is transmitted, on average, to
the wall in a collision. ew represents the coefficient of restitution for particle–wall
collisions. The value of φ′ is taken to be 0.6, as in the work of Wang et al. (1996).
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The equations can be cast in a dimensionless form to obtain

u∗ = ±
[
C

φ′f8

du∗

dY
− 0.5

]
at Y = ∓0.5,

C3

(
dθ

dY
+ θ

f4

f3

dν

dY

)
= ±[C2(1− e2

w)f6θ − φ′f7(u
∗ + 0.5)2

]
at Y = ∓0.5.

It is convenient for the purpose of the present study to rewrite these boundary
conditions in the following form:

u∗ = ±
[
ε
C

φ′f8

du∗

dY
− 0.5

]
at Y = ∓0.5, (1)

C3

(
dθ

dY
+ θ

f4

f3

dν

dY

)
= ±ε [C2(1− e2

w)f6θ − φ′f7(u
∗ + 0.5)2

]
at Y = ∓0.5, (2)

where ε is an arbitrary parameter. Clearly, when ε is unity, we recover the Johnson &
Jackson boundary conditions. When ε is set to zero, the particles are not allowed to
slip at the wall and the net flux of pseudo-thermal energy from the wall to the particles
becomes zero. The latter, hypothetical situation, is referred to as the adiabatic case
(Wang et al. 1996; Alam & Nott 1998). The parameter ε is a continuation parameter
that allows us to track the manner in which the solution structure varies as we go
from the hypothetical adiabatic case (ε = 0) to the Johnson & Jackson boundary
conditions (ε = 1). The solutions for intermediate values of ε do not correspond to
any specific physical cases. Nevertheless, tracking the evolution of solutions as a
function of ε exposes the underlying structure in a more clear fashion. As the walls
are impervious to the particles, u · n = uw · n. For our problem, it then follows that v∗
is zero at both boundaries.

The adiabatic case has a simple steady-state solution (henceforth referred to as the
base state) that exists for all values of C , namely

ν = constant = ν, u∗ = Y , v∗ = 0, θ = f2(ν)/f5(ν). (3)

As mentioned earlier, this solution may be unstable under some conditions, giving
rise to the evolution of non-uniform solutions. In general, the non-uniform structures
can have axial and/or lateral structure. We have specifically excluded the modes
having both lateral and axial structure or only axial structure by demanding that
the disturbances be independent of X, the axial position. Thus, in the present study
we are concerned only with the so-called layered solutions in which ν = ν(Y , t), etc.
Therefore, all the X-derivatives can be set to zero in the above system of equations.

When ε 6= 0, even the base-state solution will become non-uniform: ν = ν(Y ), etc.
Here also, we will concentrate on the fate of perturbations that depend only on Y :
so, once again, the X-derivatives can be set to zero.

With this simplification, the equations of motion become

∂ν

∂τ
+
∂(νv∗)
∂Y

= 0, (4)

ν

(
∂u∗

∂τ
+ v∗

∂u∗

∂Y

)
=

∂

∂Y

(
C2f2θ

1/2 ∂u
∗

∂Y

)
, (5)

ν

(
∂v∗

∂τ
+ v∗

∂v∗

∂Y

)
=

∂

∂Y

[
C2

{
−f1θ +

∂v∗

∂Y

(
4
3
f2θ

1/2 +
8ν2

3π1/2
ηg0θ

1/2

)}]
, (6)
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3
2
νC

(
∂θ

∂τ
+ v∗

∂θ

∂Y

)
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C3f3θ

1/2 ∂θ

∂Y
+ C3f4θ

3/2 ∂ν

∂Y
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− Cf5θ
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4
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+

8ν2
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(
∂v∗

∂Y

)2}
. (7)

3. Numerical scheme
We have used several computational schemes, in order to verify the accuracy of

our calculations and ascertain that the computed results are not artifacts of any
specific numerical discretization procedure. Three of the methods we have used
are: a second-order finite difference method, a Galerkin finite element method, and
a Chebyshev–Tau Galerkin method. We will not present the details of the finite
difference scheme as it is relatively straightforward.

The Chebyshev–Tau Galerkin approximation requires the expansion of a dependent
variable β in the following manner:

β(ξ, t) =

N∑
k=0

ak(t)Tk(ξ).

We substitute the expansions into the equation of motion and form the inner
product of the resulting equations with each of the N + 1 Chebyshev polynomials.
The integrals are evaluated using the inverse discrete Chebyshev transform, which
uses the Gauss–Lobatto collocation points for all equations of motion.

The imposition of the boundary conditions and the mean volume fraction generates
a set of algebraic constraints which supplement the differential equations for the
coefficients ak(t). Further details on the implementation of this scheme can be found
in Canuto et al. (1988)

The Galerkin finite element method is essentially similar, with the main difference
being that the expansion of the variables is in terms of local basis functions (see,
for example, Reddy 1984). We employed Hermite cubic basis functions and used
Gaussian quadrature for the integration.

4. Results
4.1. Bifurcation analysis: adiabatic boundaries

The dimensionless base-state solution described by (3) depends only on ν and ep.
Its stability is influenced by an additional parameter, namely the dimensionless plate
separation 1/C , see (4)–(7). Alam & Nott (1998) showed that the eigenfunctions for
the linearized equations are

ν̂(y) = ν̂1 cos kn(y ± 1
2
), θ̂(y) = θ̂1 cos kn(y ± 1

2
),

û(y) = û1 sin kn(y ± 1
2
), v̂(y) = v̂1 sin kn(y ± 1

2
),

}
(8)

where kn = nπ, and the mode number n is a positive integer. The even modes
correspond to eigenfunctions of ν and θ that are symmetric about the mid-plane (those
of u∗ and v∗ are antisymmetric) and the odd modes correspond to eigenfunctions of
ν and θ that are anti-symmetric (those of u∗ and v∗ are symmetric). Substitution of



Effect of boundaries on plane Couette flow of granular material 211

0.65

0.55

0.45

0.35

0.25

0.15
0 0.05 0.10 0.15 0.20

î

C

0.9
0.7

0.5
0.3

ep=0.1

Figure 2. Marginal stability contours for different values of ep. Adiabatic walls. In each case, the
uniform base state is linearly stable in the region to the right of the marginal stability contour.

the above in the linearized governing equations gives a dispersion relation that is
quartic in the eigenvalue ω, and the least-stable eigenvalue for all n is purely real.
The condition of marginal stability for mode n then is (equation (5.10) in Alam &
Nott 1998), (

1

C

)2

=
N1

N2

k2
n, (9)

where

N1 =
1

f5

(
f3 − f1

f′1
f4

)
and N2 =

(
f′5
f5

+
f′2
f2

)
f1

f′1
− 2,

with the functions f1–f5 evaluated at ν = ν and the primes indicating derivatives with
respect to ν. For fixed values of the mean density ν and ep, it is then clear from (9) that
as the plate separation 1/C is increased, the n = 1 mode will be the first to become
unstable at Cc = 2π(N2/N1)

1/2, and successive modes become unstable after intervals
of Cc. Hence there will be simple bifurcations from the uniform solution at intervals
of Cc in the plate separation in a bifurcation diagram showing steady-state solutions,
and the bifurcating branches will represent alternately asymmetric and symmetric
solutions (see, for example, figure 14).

For the sake of clarity in exposition of our results, in what follows we shall
concentrate mainly on symmetric perturbations (i.e. even values of n) and the steady-
state solutions that arise from them, and address asymmetric solutions in § 4.4. The
locus of marginal stability for symmetric perturbations in the (ν, C)-plane is due to
the n = 2 mode, which is shown in figure 2 for different values of ep. For specified
ν and ep, the base state is linearly stable for large C (small plate separations) and
as C is decreased it becomes unstable. Note that the region of instability of the
uniform solution expands as the coefficient of restitution is decreased. This trend
can be attributed to the fact that the instability is caused by the inelastic nature of
the particle–particle collisions. Figure 2 also illustrates the result that there are no
layering instabilities below a mean solids fraction of roughly 0.156, regardless of the
value of ep.

The above result indicating the stability of the uniform solution for low ν is not
borne out by the simulations of Tan (1995); figure 3 shows the evolution of a non-
uniform structure in his simulation of shear flow for a mean particle volume fraction
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Figure 3. Particle dynamics simulation of shear flow of inelastic disks by Tan (1995). Panel (a)
reveals the formation of two dense layers of disks, which subsequently coalesce to give a single layer
shown in panel (b). ν = 0.05; ep = 0.6; C = 0.00089.

of 0.05. His simulations were started with a nearly uniform assembly of disks confined
between two stationary parallel plates and assigned an initial velocity distribution
with zero mean. The apparent shear rate was then increased from zero to a desired
final value in an exponential manner and the evolution of the structure was followed
by particle dynamics simulations. It was found that two dense plugs formed in the
vicinity of the walls and slowly travelled towards the centreline (figure 3a), eventually
merging into a single dense plug (figure 3b). This central plug persisted even if the
apparent shear rate was lowered. This suggests the possibility of stable non-uniform
structures, even in dilute systems. The linear stability analysis, summarized in figure 2,
indicates that the base state is linearly stable for ν less than roughly 0.15. This then
raises doubts about the validity of the continuum equations based on the kinetic
theory of granular materials, as they appear to predict a qualitatively incorrect
behaviour.

In an attempt to compute the steady-state solutions that the layering instabilities
lead to and to also look into the possibility of segregation at low ν, we carried
out a bifurcation analysis of the equations of motion and computed, by numerical
continuation techniques (Doedel, Keller & Kernevez 1991), families of fully developed
non-uniform solutions. As described below, the continuum equations do indeed predict
the existence of layered solutions even at low values of ν. In this section, we will
consider only solutions in which ν and θ are symmetric about Y = 0.

The bifurcation diagram for ep = 0.8 and ν = 0.35 is presented in figure 4. This
shows the particle volume fraction at the centreline, ν(Y = 0) as a function of
the bifurcation parameter C . As the walls are adiabatic, the uniform solution given
by ν = 0.35 is possible for all C (see equation (3)) and this branch is shown by
the horizontal line ν(Y = 0) = 0.35. This state is linearly stable for large C , and as
one decreases C it loses stability through a supercritical pitchfork bifurcation; a real
eigenvalue crosses the imaginary axis from the left half-plane into the right half-plane.
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Figure 4. Bifurcation diagram for ep = 0.8, ν = 0.35 and adiabatic walls: —–, stable; - - -, unstable.

The branches that originate from this bifurcation point represent stationary solutions
corresponding to the even modes in (9). In this figure, the uniform solution to the
right of point A is shown by a solid line to indicate linear stability, while it is shown
by a dashed line to the left of A to indicate that it is now linearly unstable.

Two stable solution branches originate at the bifurcation point (A). These branches
correspond to fully developed layered solutions, i.e. solutions with structure only in
the Y -direction. The upper branch corresponds to a solution with a dense region at
the centre and a dilute region near the walls. The lower branch corresponds to a
solution which has a dense region of particles near the wall and a dilute region at
the centre. As the plate separation is increased the solutions show a greater degree of
segregation. The ν(Y ) profile of the solutions is shown schematically in the insets.

Other bifurcations, corresponding to the points of marginal stability of the n = 4, 6
and higher even modes, arise at lower values of C . Thus, for example, two layered
solutions bifurcate out of the uniform state at point B where the value of C is half of
that at point A. The density profiles for these solutions have two ‘humps’ between the
restraining plates, and each of these humps corresponds exactly with a single-hump
layered solution at twice the value of C (emerging from point A). In other words,
the solution at any point in the branches originating from point B is a periodic
replication of the solution at half the value of C in the branches originating from
point A. Similarly a three-humped solution emerges at one-third of the value of C
at point A and so on. The first two pairs of branches of multiple-humped solutions
are shown in figure 4. Note that these solutions, shown by broken lines, are unstable
to disturbances with a single hump. Therefore these branches are of less interest than
those emerging from point A; for this reason we will present results for only the first
pair of branches bifurcating from the uniform solution (i.e. the branches originating
from point A in figure 4) in what follows.
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Figure 5. The structure of fully developed solutions corresponding to points P (broken lines) and
Q (solid lines) in figure 4. C = 0.02. (a) Particle volume fraction, (b) pseudo-thermal temperature,
(c) axial velocity.

Figure 5 shows the structures of the two fully developed solutions at C = 0.02
(points P and Q in figure 4). It is clear that the solution corresponding to point P
lying in the upper primary branch in figure 4 consists of a dense plug of solids in
the vicinity of Y = 0, while the solution at point Q in the lower branch of figure 4
has a pair of dense plugs near the walls (see figure 5a). The pseudo-thermal energy
is low in regions of high ν, and vice versa, and this is an immediate consequence of
the Y -momentum balance. It is apparent from figure 5(c) that the velocity gradient
is very small in the dense regions.

When the walls are adiabatic, they play no special role in influencing the solution
structure. Indeed, one can view the granular material confined between the walls as a
slice of an unbounded granular material under shear. To be specific, solutions of the
adiabatic problem can be ‘stacked’ together to create a solution for the unbounded
problem. The volume fraction and granular temperature profiles in such solutions will
naturally be periodic in the Y -direction with a dimensionless wavelength of unity.
The two solutions presented in figure 5 yield the same layered solution for unbounded
flow, the only difference being that they are out of phase by half a wavelength. Thus
the two branches bifurcating from point A in figure 4 differ only by this phase shift.
The same is true for the branches emerging from point B and so on. The important
point to note is that the adiabatic wall does not discriminate between the two branches
separated by this phase shift. We shall see later that when the walls are non-adiabatic,
the two solutions no longer differ by only a phase shift, and that one of the branches
is chosen as the primary branch.

Figure 6 shows the bifurcation structure for various mean particle volume fractions
in the limit of adiabatic walls. (As per our discussion earlier in connection with
figure 4, only the primary branches which represent solutions with a single density
maximum are shown.) For large ν values, the bifurcation is supercritical (see panels
a–d). However, as ν is decreased, the bifurcation becomes subcritical (panels e, f), thus
creating a region to the right of the bifurcation point in which three stable solutions
and two unstable ones coexist.

Irrespective of whether the bifurcation is supercritical or subcritical, the magnitude
of the non-uniformity in the layered solution branch is small in the vicinity of the
bifurcation point, and it becomes progressively more pronounced as we move further
along this branch.

It is instructive to examine how the bifurcation point, where the layered solutions
emerge from the base state, moves as we change ν. It can be seen from figure 6 that the
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Figure 6. The bifurcation diagrams for various values of ν. ep = 0.8. Adiabatic walls. Only the
uniform solutions and the single-hump branches bifurcating from the uniform solution are shown.

value of C corresponding to this bifurcation point first increases as ν is decreased from
a large value, then reaches a maximum and subsequently recedes towards zero. This
is to be expected from the marginal stability contours shown in figure 2. According
to linear stability analysis, the bifurcation point reaches C = 0 when ν = ν∗ ≈ 0.156
for the case ep = 0.8, shown in figure 6. Thus, figure 6(f) illustrates a situation where
layered solutions coexist with a uniform state which is linearly stable for all C > 0.

It can be ascertained through a linear stability analysis of the base state that the
real part of the leading eigenvalue tends to zero as C → 0 for any ν. Therefore, the
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Figure 7. The variation of ν as a function of Y for several different values of C . ν = 0.15,
ep = 0.8: ——, C = 0.008; – – –, C = 0.006; - - -, C = 0.002; – - –, C = 0.00043.

bifurcation obtained in the case of low ν values, where the base state is linearly stable
for all C > 0, belongs to the category of bifurcations from infinity (Rosenblat & Davis
1979, see the Appendix for further details). Accordingly, the bifurcation point remains
pinned at the origin when ν < ν∗, and layered solutions bifurcate from C = 0 for all
values of ν in his range.

We conclude that layered, non-uniform solutions are indeed predicted at low values
of ν by a continuum description for rapid granular flow, even though the uniform base
state is linearly stable. Needless to say, these solutions can arise only when the plate
separation is sufficiently large or, equivalently, C is sufficiently small (see figure 6f).
For such values of C , a sufficiently large disturbance to the (linearly stable) uniform
state can drive the system to one of the layered solutions, as a result of the nonlinear
terms in the equations. Therefore it should indeed be possible to capture behaviour
of the type presented in figure 3, as our transient analysis below demonstrates.

Figure 7 shows the profile of ν for points on the upper unstable branch in figure 6(f).
As C approaches zero, the ν-profile becomes flatter and flatter and the hump less
and less pronounced. This suggests that, the smaller the value of C , the smaller is the
amplitude of the disturbance which may be able to drive a dilute system away from
the uniform state to the layered state.

We have performed calculations such as those shown in figure 6 for several other
values of ep. In general, as ep is decreased, the range of values of C for which the
system admits stable layered solutions becomes larger. This is consistent with the
results of the linear stability analysis presented in figure 2.

4.2. Transient simulations: adiabatic boundaries

We now turn our attention to the evolution of non-uniform layered solutions, as
predicted by equations (1), (2), (4)–(7). As in the bifurcation analysis of the previous
subsection, we restrict attention to solutions which preserve the symmetry of ν and
θ about the centreline. The initial condition is obtained by perturbing the uniform
state by adding a small multiple of the eigenfunction corresponding to the dominant
eigenvalue of the uniform state, scaled so that the maximum value of ∆ν is 0.01. As
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Figure 8. Evolution of layered solution from an unstable uniform state. ν = 0.35; ep = 0.8;
C = 0.03. Curve 1: τ = 0; Curve 2: τ = 2000; Curve 3: τ = 3000; Curve 4: τ = 6000.

the growth rate of this eigenmode is quite small the solution takes a long time (about
5000 dimensionless time units) to develop. The eigenfunction which has been added to
the uniform solution represents an increase in the particle concentration in the centre
and a depletion near the boundaries (curve 1, figure 8a), while the opposite is true for
the granular temperature (curve 1, figure 8b). The perturbation to the axial velocity
profile is very small (curve 1, figure 8c). The perturbation in the transverse velocity
is such that it tends to convect the particles away from the boundaries and towards
the centreline (curve 1, figure 8d). It is clear from figure 8 that the particle volume
fraction increases gradually in the centre where the particles are also becoming less
thermally active. Appreciable nonlinearity develops in the axial velocity profile; the
region of high concentration shears much less than the dilute region.

If we reverse the sign of the initial perturbation in figure 8, so that the initial
condition now consists of a depletion of particles in the centre and an increase in the
concentration near the boundaries, the system will evolve to the other fully developed
state in which a pair of dense plugs is located near the boundaries (see figure 5).

In the example considered in figure 8 (ν = 0.35 , ep = 0.8 , C = 0.03), the uniform
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Figure 9. Transient evolution of layered solution from a uniform base state. ν = 0.35; ep = 0.8;
C = 0.015. Both the single-hump mode, and the dominant two-hump mode were excited initially.
Curve 1: τ = 0; Curve 2: τ = 4000; Curve 3: τ = 6000; Curve 4: τ = 10 000.

state was unstable and the dominant eigenmode involved only a single hump; when
this mode was excited the system evolved smoothly to the layered structure shown
there. If we consider the same uniform state (ν = 0.35 , ep = 0.8), but increase the
plate separation by a factor of two (so that C = 0.015), the uniform state is still
unstable; however, the dominant eigenmode now contains two humps in ν located
on either side of the centreline. When this mode is excited along with the eigenmode
involving only a single hump (curves labelled 1 in figure 9a–d), the double-humped
mode grows faster, producing two plugs (curves 2 in these plots). However, these
plugs slowly coalesce to produce a single central plug, as the two-humped solution is
linearly unstable. Thus the continuum equations do capture the formation of multiple
plugs (during transients) which subsequently coalesce, as observed in the simulations
of Tan (1995).

In the above examples, the base states are linearly unstable to a layering instability
so any small disturbance will drive the system toward a layered solution. Let us now
consider a different example with ν = 0.15 , ep = 0.9 , C = 0.005, when a linearly stable
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base state coexists with a stable fully developed layered solution (see figure 6). Then
one can anticipate that very small perturbations of the base state will decay, while
sufficiently large disturbances will grow and develop into the stable layered solution.
This is illustrated in figures 10(a–c), where the temporal evolution of the system
following three different initial perturbations is shown. As in the previous examples,
the perturbations consist of small multiples of the eigenfunction corresponding to the
dominant eigenvalue. For small initial perturbations, shown in panels (a) and (b), the
perturbations decay, and the uniform state is recovered asymptotically. However, if
the perturbation is sufficiently large, as in panel (c), the perturbations grow and the
layered solution is obtained at large times.

While the above examples illustrate the manner in which layers can develop, the
initial conditions considered in them differ from those investigated by Tan (1995). In
spite of this difference, it is easy to recognize that results of the type observed by Tan
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can be captured in a qualitatively correct manner by the continuum equations and
this has been further verified by Agrawal (1999).

4.3. Bifurcation analysis: non-adiabatic boundaries

The adiabatic boundary conditions considered above are artificial; one expects the
particle–wall collisions to be inelastic in general, and some slip to occur at the walls.
As noted earlier, when ε in equations (1) and (2) is set to zero, the walls become
adiabatic, while setting ε to unity recovers the boundary conditions of Johnson &
Jackson (1987). In order to understand how the non-adiabatic nature of the particle–
wall interactions affects the flow characteristics, we treat ε as a parameter and trace
its influence on the bifurcation structure described in § 4.1.

Figure 11(a) shows the bifurcation structure for ν = 0.35, ep = 0.8, ew = 1 and
ε = 0.1. The walls in this case act as a weak source of pseudo-thermal energy. Three
branches (1, 2 and 3) of solutions for this case are shown by the thick lines, while
the thin lines show the bifurcation structure for adiabatic walls (ε = 0). Clearly, the
solution branches have detached themselves from one another when ε is made non-
zero. As ε increases, they recede further away from the uniform solution branch of
the adiabatic case. If we regard the bifurcation structure in the adiabatic case as being
perfect (Strogatz 1994, p. 69) we see that it develops imperfections when the walls
become non-adiabatic. The branches which are linearly stable to one-dimensional
perturbations with centreline symmetry in ν and θ are shown by solid lines, while
those that are unstable to such perturbations are indicated by broken lines.

Figure 11(b) shows the bifurcation structure for ε = 1. In this case the branches
have receded quite far from the uniform solution branch of the adiabatic case. We
see that there are no longer any solutions with small spatial variations in ν, except
when the plate separation is very small. In this figure, branch 1 corresponds to the
layered solution with the plug in the middle; branch 2 is curled up so that the top
portion is unstable while the bottom portion is stable. Branch 3 has also curled up,
but in this case the entire branch is unstable.

We next consider the bifurcation structure when the boundaries act as sinks
of pseudo-thermal energy. This bifurcation structure, shown in figure 12(a) for
ν = 0.35, ep = 0.8, ε = 0.01 and ew = 0.5, is essentially a distorted reflection of
figure 11(a) about ν = 0.35. Figure 12(b) shows the bifurcation structure for non-
adiabatic boundary conditions with ε = 1. A comparison of figures 11 and 12 clearly
reveals how the nature of the walls selects the primary solution branch, defined here
as that branch which exists for all values of C (i.e. branch 1 in figures 11 and 12).
When the boundaries are adiabatic, the primary branch is simply the uniform solution
and the layered solutions bifurcate from this branch. The imperfection introduced
by the boundaries is such that when they act as sources of pseudo-thermal energy,
the layered branch with a dense plug of grains in the middle becomes the primary
branch; when the walls act as sinks of pseudo-thermal energy, the layered branch
with high particle concentrations in the vicinity of the two walls is selected as the
primary branch.

Particle volume fraction profiles along the primary solution branches of the cases
of source and sink walls (that is, branch 1 in figures 11 and 12) at two different values
of C are presented in figure 13. Figure 13(a) corresponds to a relatively small plate
separation; for source (sink) walls the volume fraction near the wall is slightly lower
(higher) than that in the adiabatic case, while the opposite is true in the centre region.
The volume fraction profile in the primary branch with source walls, at C = 0.014, is
shown in figure 13(b); also shown in this figure is the layered solution of the adiabatic
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Figure 11. The effects of boundaries on the bifurcation structure. The boundaries act as sources of
pseudo-thermal energy. ν = 0.35; ep = 0.8; ew = 1.0. (a) Results for ε = 0 (thin lines) and ε = 0.1
(thick lines). (b) Results for ε = 0 (thin lines) and ε = 1.0 (thick lines).

problem with a plug in the centre. The similarity between the two profiles is striking,
making it abundantly clear that the principal role of the wall has been to select the
primary branch. Figure 13(c) compares volume fraction profiles on the primary branch
for the case of sink walls with the corresponding solution in the adiabatic case, with
plugs at the boundaries. It reinforces this conclusion.

Wang et al. (1996) found that the base-state solutions obtained over a wide range
of plate separations for the case of adiabatic boundaries were only slightly modified
when the walls were made non-adiabatic (see figure 2 in their paper). This was
disputed by Alam & Nott (1998), who suspected that this finding was likely to be a
consequence of inadequate numerical accuracy. The present study, employing three
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Figure 12. The effects of boundaries on the bifurcation structure. The boundaries act as sinks of
pseudo-thermal energy. ν = 0.35; ep = 0.8; ew = 0.5. (a) Results for ε = 0 (thin lines) and ε = 0.01
(thick lines). (b) Results for ε = 0 (thin lines) and ε = 1.0 (thick lines).

different numerical schemes to rule out numerical artifacts, establishes clearly that
the solutions of the type found by Wang et al. are possible only for small plate
separations. The imperfect bifurcations brought about by the non-adiabatic nature of
the bounding walls eliminate solutions of this type for large separations. Therefore,
for the cases where the walls act as sources or sinks of pseudo-thermal energy, the
stability studies of Wang et al. are erroneous, as they are based on perturbations
about incorrect steady states. On the other hand, all the results of Wang et al. for
adiabatic boundaries are correct, as has been verified by Alam & Nott (1998) and the
present authors.
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4.4. Asymmetric layered solutions

In the results presented thus far, we have restricted attention to solutions with ν
symmetric about the centre-plane of the sheared layer. Dropping this requirement
we find that, in addition to the symmetric solutions, there exist asymmetric layered
solutions. These come in pairs which, due to the absence of gravity in our analysis, are
physically identical, and are merely reflections of each other about the centre-plane.

The bifurcation diagram for ν = 0.35, ep = 0.8 and adiabatic boundaries is shown
in figure 14 where we have included both symmetric and asymmetric solutions (only
the first few layered solution branches are shown). The insets show schematically the
ν-profiles for some of the branches. The primary asymmetric branch, arising from the
n = 1 instability of (9), emerges from the uniform state at C = 0.074, which is twice
the value of C at which the primary symmetric branches bifurcate from the uniform
solution. As mentioned earlier, there are two asymmetric branches bifurcating at
C = 0.074, both having the same ν(Y = 0) since they are reflections of each other
about the central plane, and they are therefore superimposed in the bifurcation
diagram. The same is true for the secondary asymmetric branch (bifurcating at
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Figure 14. Bifurcation diagram showing both symmetric and asymmetric branches. The boundaries
are assumed to be adiabatic. ν = 0.35; ep = 0.8. The insets show the structures of the solutions for
the indicated branches.

C = 0.0247), and so on. The stability characteristics of the various branches are
also indicated in figure 14, with solid lines indicating solutions which are stable (to
one-dimensional disturbances) and broken lines indicating unstable solutions.

Our analysis described in the earlier subsections focused exclusively on the stability
of solutions to disturbances for which ν and θ were symmetric about the centreline.
When this restriction is imposed, the primary symmetric branches (see figure 4
corresponding to the same set of parameters as figure 14) were found to be linearly
stable. Now, when we remove this restriction and allow asymmetric disturbances, the
same primary branches are no longer linearly stable (compare figures 4 and 14).

Figure 15 shows the structure of a fully developed solution at point W in the
primary asymmetric branch in figure 14. Panel (a) reveals that the ν-structure has a
high density of particles near one wall and a low density of particles near the other.
The corresponding dimensionless temperature and axial velocity profiles are shown
in panels (b) and (c) respectively. As expected, the granular temperature is low in the
region with high ν and vice versa. The region with high ν behaves essentially like a
plug and shearing is limited almost completely to the dilute region. In the case of
adiabatic walls, the relationship between the symmetric and asymmetric solutions can
easily be recognized: by properly stacking the two asymmetric solutions corresponding
to a given value of C , one can generate the symmetric solutions at C/2.

Figure 16 shows the bifurcation diagram for the parameter values in figure 14,
except that the walls are now non-adiabatic. We see that for both source and sink
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Figure 15. The structure of a fully developed asymmetric solution corresponding to point W in
figure 14. ν = 0.35; ep = 0.8; C = 0.06. (a) Particle volume fraction; (b) dimensionless temperature;
(c) dimensionless axial velocity.

walls (panels a and b respectively), the characteristics of the bifurcation diagram are
essentially the same as those for the symmetric case. The first asymmetric branch is
the only stable branch, and it emerges from the primary symmetric branch (labelled
branch 1 in figures 11 and 12). Additional asymmetric branches, all of which are
unstable, originate from the limit points of the other symmetric branches.

5. Summary
We have presented a bifurcation analysis for steady fully developed plane Couette

flow of a granular material, using the continuum equations of motion and a consti-
tutive model appropriate for rapid shear. Our analysis gives the final steady states
of the layering instabilities that were reported by Wang et al. (1996) and Alam &
Nott (1998), and the stability of these branches in turn to layering disturbances. As
in these earlier studies, we have studied the effect of wall properties by considering
three representative sets of parameters that correspond to the walls being adiabatic,
and sources and sinks of pseudo-thermal energy. The bifurcation diagram for a given
set of grain and wall properties and the mean solids fraction ν is given as a plot of
the solids fraction at the centre, ν(0), versus the dimensionless inverse Couette gap C .

When the walls are adiabatic, the primary solution branch is that of uniform shear
and constant density across the gap. As the Couette gap increases, bifurcations occur
on this branch at equal intervals of 1/C , and points on the bifurcating branches
represent solutions with considerable non-uniformity in density and shear rate. Two
types of non-uniform solutions, one with a dense region of particles in the centre
and leaner regions near the wall, and another with a leaner region of particles in the
centre and denser region near the walls, are both possible.

The bifurcations are supercritical when ν is large, and become subcritical as ν
decreases. The value of C at each bifurcation point decreases with ν, and eventually
when ν falls below a critical value of roughly 0.156 the bifurcations occur at C = 0 (or
infinite Couette gap). These ‘bifurcations from infinity’ imply that at low mean density
there is a non-uniform solution coexisting with that of uniform shear for a range
of C , even though the latter is linearly stable; this result explains the observation
of segregated structures in the computer simulations of Tan (1995) at a low mean
density. We have also presented transient simulations of the time-dependent equations
of motion, which clearly show that the non-uniform solutions at low densities may
be attained via finite-amplitude perturbations from the uniform shear solution. Our
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Figure 16. Bifurcation diagram showing both symmetric and asymmetric branches. Results are
shown for ε = 0 (thin lines) and ε = 1.0 (thick lines). ν = 0.35; ep = 0.8. (a) ew = 1.0. (b) ew = 0.5.

transient simulations also capture the coalescence of dense layers that was reported
by Tan.

The effects of inelastic collisions and partial slip at the walls are then investigated by
treating the extent of non-adiabaticity as a parameter. It is found that the role of the
boundary is in selecting the primary branch; the primary branch represents solutions
with a dense layer at the centre when the walls are energy sources, and dense layers
near the walls when the walls are energy sinks. This result clearly demonstrates that
there is no nearly uniform solution for non-adiabatic walls (except when C is large),
and therefore that the base states found by Wang et al. (1996) for non-adiabatic walls
are numerical artifacts.

This paper demonstrates that one-dimensional non-uniform structures found in
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dynamic simulations of granular flow can be explained by the continuum equations
of motion. Strictly speaking, the model developed by Lun et al. (1984) is valid only
when the collisions between particles are nearly elastic. When this model is used in
conjunction with solid boundaries, the particle–wall collisions should also be nearly
elastic. Thus, our results for highly inelastic particles, such as the marginal stability
contours for low ep values in figure 2, should be regarded as qualitative.

Although the present work has been devoted to non-uniform solutions having only
lateral structures, particle dynamics simulations reveal that a richer variety of solutions
is possible when one allows both axial and lateral structures to develop simultaneously
(Tan & Goldhirsch 1997). Stability analyses of the continuum equations (Wang et
al. 1996; Alam & Nott 1998) do suggest the possibility stationary and travelling
modes having both axial and lateral structure; a thorough exploration of the fate
of these modes remains unexplored. It would be interesting to examine if two- and
three-dimensional transient simulations of the continuum equations reveal features
such as cluster–cluster interaction and churn flow reported by Tan & Goldhirsch
(1997).

This work was supported by the National Science Foundation (CTS-9421661), the
Exxon Education Foundation, and the International Fine Particle Research Institute.

Appendix. Bifurcation from infinity
Consider the eigenvalues of equations (4)–(7), linearized about the uniform base

state. As shown in Alam & Nott (1998), the eigenvectors for this case are

ν̂(y) = ν̂1 cos kn(y ± 1
2
),

θ̂(y) = θ̂1 cos kn(y ± 1
2
),

û(y) = û1 sin kn(y ± 1
2
),

v̂(y) = v̂1 sin kn(y ± 1
2
),


(A 1)

where kn = nπ, n being a positive integer. Substituting (A 1) into the linearized
governing equations yields the dispersion relation

ω4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0. (A 2)

The coefficients a0–a3 are all real and depend on the mean volume fraction ν, the
dimensionless functions of the volume fraction f1–f8, and kn. The expressions are too
cumbersome to reproduce here, but may be found in Alam (1998).

Two roots of (A 2) are real and the others form a complex-conjugate pair. In the
limit of small C , the real roots have the form

ω(1) = −C2
(
a04/a12

)
+ O

(
C4
)
,

ω(2) = ω
(2)
0 + O

(
C2
)
,

with

ω
(2)
0 = − 2

3ν
(f2f5)

1/2 < 0,
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and the real and imaginary parts of the conjugate pair are

ωr = C2

(
a04 + a2

12/a
2
30 − a12a22/a30

2a12

)
+ O

(
C4
)

ω2
i = C2

(
a12/a30

)
+ O

(
C4
)
.

The coefficients aij are independent of C (Alam 1998). It can be shown that ωr is
always negative, and that ω(1) is the least-stable mode (Alam 1998); it is positive
above a critical value ν∗ of the volume fraction, which is roughly 0.156 when ep = 0.8,
and negative below.

For ν < ν∗, it is clear from the above that the leading eigenvalue is negative, but
decays to zero as C2 when C → 0. This falls under the class of problems described by
Rosenblat & Davis (1979), which exhibit bifurcation from infinity. The essence of their
result is as follows: a class of differential equations that yield a linearly stable trivial
solution (in our case, that of uniform shear) for all finite values of a parameter, say
µ, also yield solution(s) of finite norm (i.e. a finite distance away in phase space from
the trivial solution) for large values of µ. The structure of this solution is qualitatively
different from the eigenfunctions of the equations linearized about the trivial solution.
Rosenblat & Davis show this behaviour for a variety of equations whose common
characteristic is that the leading eigenvalue of the linearized equations decays to zero
as µ → ∞. The non-trivial solution tends arbitrarily close (in phase space) to the
trivial solution as µ → ∞, but grows apart from it as µ decreases. Moreover, this
branch of solutions does not exist for small µ, but exhibits a limit point at some finite
value of µ. Lastly, the branch of the non-trivial solution that is closer to the trivial
solution is linearly unstable, while the one farther away is stable.

These characteristics are exhibited by the system of equations (4)–(7) when ν < ν∗,
with the parameter µ identified as C−1. Thus, it is reasonable to expect that the
branch representing non-uniform solutions in figure 6(f) bifurcates from the uniform
solution branch at C = 0.
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